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Abstract

We introduce focal points for characterizing, comparing, and or-
ganizing collections of complex and heterogeneous data and ap-
ply the concepts and algorithms developed to collections of 3D in-
door scenes. We represent each scene by a graph of its constituent
objects and define focal points as representative substructures in a
scene collection. To organize a heterogeneous scene collection, we
cluster the scenes based on a set of extracted focal points: scenes in
a cluster are closely connected when viewed from the perspective
of the representative focal points of that cluster. The key concept of
representativity requires that the focal points occur frequently in the
cluster and that they result in a compact cluster. Hence, the problem
of focal point extraction is intermixed with the problem of cluster-
ing groups of scenes based on their representative focal points. We
present a co-analysis algorithm which interleaves frequent pattern
mining and subspace clustering to extract a set of contextual fo-
cal points which guide the clustering of the scene collection. We
demonstrate advantages of focal-centric scene comparison and or-
ganization over existing approaches, particularly in dealing with hy-
brid scenes, scenes consisting of elements which suggest member-
ship in different semantic categories.
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“I can think of no better expression to characterize these similar-
ities than ‘family resemblances’; for the various resemblances be-
tween members of a family: build, features, colour of eyes, gait,
temperament, etc. etc. overlap and criss-cross in the same way.”

— Ludwig Wittgenstein [1953]

1 Introduction

Recent works on organizing and exploring 3D visual data have
mostly been devoted to object collections [Ovsjanikov et al. 2011;
Jain et al. 2012; Kim et al. 2012; van Kaick et al. 2013; Huang et al.
2013b]. In this paper, we are interested in analyzing and organiz-
ing visual data at a larger scope, namely, 3D indoor scenes. Even
a moderately complex indoor scene would contain tens to hundreds
of objects. Compared to the individual objects therein, a scene is
more complex with looser structural and spatial relations among
its components and a more diverse mixture of functional substruc-
tures. The latter point is attested by hybrid scenes which contain
elements reminiscent of different semantic categories. For exam-
ple, the middle scene in Figure 1 is partly a bedroom and partly a

Figure 1: We analyze and organize 3D indoor scenes in a heteroge-
neous collection from the perspective of focal points (sub-scenes in
color). Scene comparisons may yield different similarity distances
(left) depending on the focal points.

living room. The greater intra-class variabilities and richer char-
acteristics in scene data motivate our work to go beyond providing
only a holistic and singular view of a scene or a scene collection.

We introduce the use of focal points for characterizing, comparing,
and organizing collections of complex data and apply the concepts
and algorithms developed to 3D indoor scenes. In particular, we
are interested in organizing scenes in a heterogeneous collection,
i.e., scenes belonging to multiple semantic categories. Analyzing
complex and heterogeneous data is difficult without references to
certain points of attention or focus, i.e., the focal points. For ex-
ample, comparing New York City to Paris as a whole will unlikely
yield a useful answer. The comparison is a lot more meaningful
if it is focused on particular aspects of the cities, e.g., architectural
style or fashion trends. One of the natural consequences of the focal
point driven data view is that scene comparison may yield different
similarity distances depending on the focal points; see Figure 1 for
an illustration, as well as the accompanying video.

We represent an indoor scene by a graph of its constituent objects.
A focal point, or focal, for short, is a substructure in a scene and
corresponds to a subgraph. However, we are not interested in all
sub-scenes. A key premise of our work is that meaningful focals
should be determined contextually, in a set (Figure 2), and through
a co-analysis. To illustrate, there are probably too many notable

Figure 2: Focal points (marked red in the scenes) are contextual
and depend on scene composition in a collection. With more bed-
rooms (a) or more living rooms (b), different focals were extracted
and hybrid scenes are pulled towards one of the clusters.
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Figure 3: Focal-driven scene clustering produces overlapping
clusters. An exploratory path, (a) to (e), through an overlap, which
often contains hybrid scenes (c) possessing multiple focals, can
smoothly transition between the scene clusters. These scene clus-
ters often characterize meaningful scene categories. In this exam-
ple, the transition is from bedroom scenes to offices.

aspects about Paris. When putting London and Paris together, one’s
focuses narrow down to, e.g., European capitals. If we throw New
York and Milan into the mix, then most people are first reminded
that the four cities are the fashion capitals of the world.

In this work, we are interested in extracting contextual focal points
that are representative in a given scene collection. For a focal to be
representative, it must occur sufficiently frequently. However, fre-
quency analysis alone is insufficient. For example, chairs are likely
to be found in almost all scenes, but they can hardly be regarded
as representative of any meaningful scene groups, e.g., bedrooms
or living rooms. We stipulate that representativity is also tied to a
notion of coherence or compactness of the group of scenes the focal
point is to represent or characterize. Therefore, frequency analysis
for focal extraction is intermixed with clustering, which computes
compact groups of scenes, where the scenes in each cluster are
closely connected when viewed from the perspective of the repre-
sentative focals of the cluster. Once again, the representative focals
occur frequently in the cluster and they must also induce a com-
pact cluster. To solve the two coupled problems simultaneously, we
develop a co-analysis algorithm which interleaves frequent pattern
mining [Han et al. 2007] and subspace clustering [Vidal 2011].

Focal points play a key role in our organization of a heterogeneous
scene collection. First, we define compactness of a cluster based
on a focal-centric scene-to-scene similarity, which builds on the
rooted walk graph kernels of Fisher et al. [2011] and assigns higher
weights to walks which originate from the representative focals of
that cluster. Secondly, the scene organization is given by the clus-
tering of scenes based on the representative focals extracted. Some
scenes may contain multiple focals, thus belong to multiple clus-
ters. Such scenes, typically of a hybrid nature, provide linkages
or gateways between scene clusters, allowing an exploration of the
scene organization to naturally transition between meaningful scene
categories, as illustrated in Figure 3.

Our main contribution is a focal-driven analysis and organization of
heterogeneous data collections. While we only consider 3D indoor
scenes in this paper and we are not aware of previous works on co-
analysis and organization of heterogeneous scene collections, the
analysis is general and not confined to scene data. Important char-
acteristics of our work which set it apart from previous approaches
to organizing data collections include:

• Data are not compared holistically without discrimination.
We develop a focal-centric scene descriptor for scene com-
parison, which supports scene analysis in perspective.

• Similarity distance between two scenes may be non-unique,
i.e., it is based on the focals designated for comparison.

• Multiple views on scene data depend on focal points, leading

to overlapping clustering of a scene collection, rather than a
partition. The resulting organization is particularly suited for
retrieving and exploring complex and hybrid scenes.

We show advantages of focal-centric scene comparison and organi-
zation over existing approaches, particularly in dealing with hybrid
scenes. We also demonstrate new capabilities offered by the new
data organization for scene retrieval and exploration.

2 Related work

Background. At a conceptual level, our work can be seen as a
realization of the notion of “family resemblances” from the sem-
inal work of Wittgenstein [1953]. A scene collection forms the
“family”, and the extracted focals represent the resemblances which
“overlap and criss-cross” among the scenes. Works from cog-
nitive psychology, in particular those by Rosch [1975], provided
evidences that perceptual and semantic categories are naturally
formed in terms of focal points or prototypes (see account in [Tver-
sky 1977]), though the so-called “cognitive reference points” in her
work referred to whole representatives of a category instead of fea-
tured substructures. The role of context in measuring data similarity
has long been studied in various fields, e.g., [Biberman 1994; Jeh
and Widom 2002]. Our work presents an algorithm for identifying
conceptual focals which serve as reference points for comparing
scenes in a heterogeneous collection.

Scene analysis. As the most familiar environments to humans,
indoor scenes are ubiquitous in graphics applications such as virtual
reality, gaming, and design. Much research in vision and graphics
has been devoted to recognizing, classifying, and retrieving indoor
scenes, e.g., [Rasiwasia and Vasconcelos 2008; Quattoni and Tor-
ralba 2009; Fisher et al. 2011; Juneja et al. 2013; Xu et al. 2013;
Zhao et al. 2014], among others. Our work recognizes the difficulty
in comparing complex scenes globally, e.g., via the classic graph
kernels [Fisher et al. 2011]. We propose extracting and utilizing fo-
cal substructures for scene analysis. Of relevance are works which
extract distinctive regions [Shilane and Funkhouser 2007; Juneja
et al. 2013] that are representative of a semantic category. The fo-
cals we extract are not meant for scene recognition but organization;
one focal may be shared by scenes from different categories.

Object collections and co-analysis. There have been a growing
body of work on unsupervised co-analysis [Xu et al. 2012; Huang
et al. 2012; van Kaick et al. 2013; Huang et al. 2013a; Zheng et al.
2013] and organization of 3D object collections [Ovsjanikov et al.
2011; Jain et al. 2012; Kim et al. 2012; Huang et al. 2013b]. Similar
works exist on image collections, e.g., for image co-salience detec-
tion [Cheng et al. 2014]. In most cases, co-analysis operates on
objects belonging to the same semantic category. An exception is
the recent work of Huang et al. [2013b] which performs qualitative
analysis on heterogeneous object collections. However, their object
comparison employs global shape descriptors while still resulting
in unique qualitative distances, in terms of number of “hops” in a
tree representation, between objects.

Another recent work, the co-hierarchical analysis of van Kaick et
al. [2013], also employs a clustering approach and the clustering
partitions a set of shapes into different modes of structural varia-
tion. While hierarchical models offer the flexibility to account for
structural variations, they still provide only a single view on each
shape. Our representation allows multiple views of a scene model,
each of which may be seen as from the perspective of a particular
focal point. Moreover, our analysis produces overlapping clusters
which characterize the underlying data with larger granularity.



Figure 4: An overview of our algorithm. The input is a heterogeneous collection of 3D indoor scenes. We represent each scene by a structural
graph (a). The co-analysis algorithm is iterative, between (b) and (c). Each iteration involves an interleaving optimization consisting of focal
point detection (b) and focal-induced scene clustering (c). After the set of contextual focals are obtained, the entire scene collection can be
organized with the focals serving as the interlinks between scenes from various clusters (d).

Contextual analysis. Part-in-whole or object-in-scene types of
retrievals have been studied in semantic analysis of 3D objects or
indoor scenes. Shapira et al. [2009] define the context for a shape
part within an extracted part hierarchy. The series of work from
Fisher et al. rely on spatial and semantic relations among the scene
objects for context-based object search [Fisher and Hanrahan 2010;
Fisher et al. 2011] or object replacement for scene synthesis [Fisher
et al. 2012]. In all of these works, substructures in a scene provide
the contexts for characterizing individual objects therein. We treat
the substructures as explicit scene features, i.e., potential focals,
and perform contextual analysis in a larger scope.

One possible way to find salient substructures in a scene collection
is to extract object groups based on co-occurrences of object cate-
gories, like in the work of Xu et al. [2013]. In contrast, we group
scene objects, rather than object categories, to form focals. Fur-
thermore, the grouping in Xu et al. [2013] is based on frequency
analysis only, while we perform both frequent pattern mining and
subspace clustering for focal point extraction. Singh et al. [2012]
detect mid-level discriminative patches from a set of unlabeled im-
ages by alternating between clustering and training discriminative
classifiers. A similar idea is then applied to extract, from a large
repository of geo-tagged imagery, visual features which are both
frequently occurring and geographically distinctive under weak su-
pervision [Doersch et al. 2012]. Our co-analysis is unsupervised,
driven by a novel cluster compactness objective for both focal se-
lection and focal-induced clustering.

Frequent pattern mining. Frequent pattern mining has been an
extensively studied topic in data mining [Han et al. 2007]. The
most relevant works are those designed for frequent subgraph min-
ing, e.g., [Yan and Han 2002], which are primarily based on sub-
graph isomorphism testing. Directly adapting these methods to our
problem setting is infeasible since the relations among objects in
our input graphs are loose and possibly uncertain. We adopt inex-
act subgraph matching formulated by graph edit distances [Riesen
et al. 2010] where the edit cost is defined based on spatial arrange-
ments between scene objects. It is also worth noting that frequency
of occurrence is not the only criterion for focal point selection. The
subsequent cluster analysis further adjusts the extracted focals.

Subspace clustering. Subspace clustering clusters high-
dimensional data into multiple subspaces, each modeled by a
subset of features [Vidal 2011]. At a high level, the clustering
problem we face has a similar setting as subspace clustering, where
focals act as the feature subsets and characterize the subspaces
that contain the clusters of scenes. Subspace analysis via spectral
clustering has been one of the most effective approaches to sub-
space clustering [Wang et al. 2011a]. However, spectral clustering

always produces a partition. In our work, we perform cluster
attachment to reveal cluster overlap based on their representative
focals, making the obtained clusters better reflect the complexity
and heterogeneity of the data collection.

3 Overview

The input to our algorithm is a heterogeneous collection of 3D in-
door scenes collected from public repositories. Such scenes typ-
ically come with semantic labels for the objects and the scenes
themselves. Our analysis uses the object labels but never the scene
labels. Our goal is to extract a set of contextual focals, as well as a
clustering of the scenes based on these focals; see Figure 4.

For each scene, a structural graph is constructed which encodes two
types of relationships between scene objects: support and proxim-
ity. Our main algorithm consists of a coupled optimization whose
objective is to maximize the overall compactness of the scene clus-
ters while ensuring that the focals represent their respective clusters
effectively. A key is that each representative focal is sufficiently
discriminative so that it is frequent only within the cluster it rep-
resents or characterizes. The optimization is iterative, where each
iteration interleaves between cluster-guided focal point mining and
focal-induced subspace clustering of the scenes; see Figure 5.

The first and initial phase of the optimization is to extract frequent
substructures as focals from the input structural graphs, via sub-
graph mining (Section 4.1). Rather than relying on subgraph iso-
morphism, we perform inexact graph matching which insists on
consistency of node labeling but not edge connection. The latter is
to account for loose relations between corresponding objects across
a large heterogeneous scene collection. The matching of such re-
lations is based on a layout similarity measure between spatial ar-
rangements of objects. This matching is confined by scene group-
ing resulting from the most recent clustering phase. Specifically,
the subgraph matching is weighted so that the substructures found
are frequent only within the clusters they characterize.

In the second phase, based on the extracted focals, we perform sub-
space clustering (Section 4.2) on the scenes. The structural graphs
are clustered so that each cluster is characterized by a subset of
current focals. Generally, the representative focals for a cluster are
not unique. The clustering step seeks to maximize the compactness
of all clusters, where compactness is defined by a scene-to-scene
similarity based on focal-centric graph kernels (FCGK). We de-
fine FCGK based on the work of Fisher et al. [2011] which utilizes
rooted walk graph kernels. However, instead of weighting equally
walks from all sources, we weigh more heavily those walks which
originate from representative focals in the graphs. The maximiza-
tion is based an iteratively reweighted subspace clustering scheme
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(a) Mining 1 (b) Clustering 1 (c) Mining 2 (e) Cluster attachment (f) Focal joining(d) Clustering 2

Figure 5: Illustration of iterative optimization pipeline. A scene is depicted with a grey box enclosing several substructures represented by
circles, squares, diamonds, triangles, etc. To initialize the interleaving optimization, we first detect a set frequent substructure shown in the
middle in (a). Based on that, subspace clustering leads to incorrect clusters (marked in red) due to the trivial substructure (circle) occurring
in most scenes. Then we perform cluster-guided weighted mining which eliminates the trivial substructure. Following that, a more accurate
clustering result is obtained in (d) based on the new set of discriminant substructures in (c). Finally, we perform cluster attachment to reveal
overlapping clusters (the red and yellow clusters in (e)), as well as focal joining to discover non-local focal points (marked in red in (f)).

we develop, which gradually increases cluster compactness.

Finally, once the clusters and focals are determined by the optimiza-
tion, we perform cluster attachment and focal joining (Section 4.3).
Some clusters share scenes containing multiple focals, each charac-
terizing a different cluster. These clusters are naturally attached at
the shared scenes. Within a cluster, multiple local substructures
may occur concurrently across all or most scenes. These substruc-
tures are naturally joined to form non-local focals. Note that such
non-local focals could not be detected via subgraph mining since
only spatially close objects are connected in the graphs.

4 Focal-driven scene co-analysis

For each input scene, we construct a structural graph (Figure 6(b))
whose nodes are scene objects and edges encode spatial relation-
ship, support and proximity, between objects; see Algorithm 1.
Both nodes and edges are labeled, by object semantic labels and
relationship types (support or proximity), respectively.

We first detect all support relationship between objects by testing
vertical contacts between their shape geometries. Second, we add a
proximity edge from any object that is not connected by a support
edge, to the object which has the strongest connection with it, where
connection strength (Equation 3) is defined as a part of layout sim-
ilarity. Third, we ensure that any group of symmetric objects has
symmetric connections to other objects, if any.

We detect all groups of mutually symmetric objects and examine
for each group all outside objects connecting to that group. If more
than two symmetric objects in the group have similar spatial ar-
rangement (Equation 5) with respect to an outside object, we ensure
they all connect to the outside object with edges of the same type,
depending on their relationship against the outside object. To detect
mutually symmetric objects, i.e., objects possessing similar geom-
etry, we adopt the registration method described in [Wang et al.
2011b]. Finally, we detect the connected components in the current
graph, and connect the components with proximity edges to make
sure the entire scene is represented by a connected graph.

Our co-analysis operates on these structural graphs. The main algo-
rithm involves a coupled optimization for both focal point mining
and scene clustering. The objective of the optimization is

max
F,Ω

c∑
`=1

n`κ`(F ,Ω) (1)

where F = {Fk}nk=1 are the set of focal points, and Ω = {C`}c`=1

the set of clusters. κ` denotes the compactness of cluster C` based

on FCGK, and n` is the size of cluster C`. We optimize iteratively
with the iterations continuing until the overall compactness of the
clusters converges, specifically, when the change of the objective
function is less than 1.0 × 10−6. In the following sections, we
detail our co-analysis algorithm.

4.1 Focal extraction via graph mining

A substructure of a scene consists of a group of nearby objects
along with their spatial arrangement; it is a subgraph. We could
define focals as substructures that occur frequently across a large
number of semantically related scenes, e.g., bedrooms. However,
since scene labels can be unknown or ambiguous, especially for
hybrid scenes, we do not use them. Instead, we couple focal detec-
tion with the identification of meaningful clusters. If a substructure
occurs in a scene, we say that the scene supports that substructure.
The notion of occurrence will be quickly relaxed by inexact graph
matching, which is enabled by a similarity measure of spatial layout
between substructures of scenes.

Layout similarity. We define a layout similarity between two
substructures by examining the pair-wise spatial arrangement of
oriented bounding boxes (OBBs) of the objects in the substruc-
tures. Suppose we are given two substructures represented by two
subgraphs in the structural graphs of two scenes: Sa ⊂ GA and
Sb ⊂ GB . The layout dissimilarity between them is defined as:

Dlayout(Sa, Sb) =
∑

{p,q}∈Sa,
{θ(p),θ(q)}∈Sb

darr(〈p, q〉, 〈θ(p), θ(q)〉), (2)

Algorithm 1: Structural Graph Construction
Input : scene C = {Oi}i
Output: structural graph G = 〈V,E〉

1 ∀Oi ∈ C, V ← V ∪ {vi} ; // vertices
2 E ← E∪ SupportEdge(C) ; // support edges
3 E ← E∪ ProximityEdge(C,E) ; // proximity edges
4 U ← DetectSymGroup(C);
5 foreach U ∈ U do // for each group of symmetric objects
6 foreach v ∈ V − U do // for each outside object
7 if ∃s, t ∈ U ; 〈v, s〉, 〈v, t〉 ∈ E; darr(〈v, s〉, 〈v, t〉) < 0.1 then
8 foreach u ∈ U do // do symmetric connection
9 E ← E ∪ {〈u, v〉};

10 E ← E∪ ConnectComponents(V,E);
11 return G;



Figure 6: The structural graph (b) of the input scene (a) encodes
two types of relationship: support (red) and proximity (blue). (c)
plots the layout similarity of object pairs after spectral embedding.

where θ(p) ∈ GB is the corresponding object of p ∈ GA. Such
correspondences can be determined during subgraph mining, as de-
scribed below. darr measures the spatial arrangement dissimilarity
between two pairs of objects which is defined based on two factors.
The first is the connection strength between objects p and q:

γ(p, q) =
dH(obb(p), obb(q))

dl(p) + dl(q)
, (3)

where dH is Hausdorff distance, obb(p) the OBB of object p, and
dl(p) the diagonal length of obb(p). The second factor is the angle
between the upright vector and the vector between p and q:

ρ(p, q) = angle(vdir(p, q),vupright), (4)

where vdir(p, q) is the vector from the larger object of the two to
the smaller one and vupright the upright vector. The dissimilarity
of spatial arrangement between two object pairs 〈p, q〉 and 〈s, t〉 is
then defined as:

darr(〈p, q〉, 〈s, t〉)
= α|γ̃(p, q)− γ̃(s, t)|+ (1− α)|ρ̃(p, q)− ρ̃(s, t)|.

(5)

γ̃ = e−γ
2/(σγmax)2 is normalized connection strength where σ =

0.4 and the maximum value γmax is found for all pairs of objects.
ρ is normalized similarly. We use α = 0.6 in our implementation.
Figure 6(c) shows a few examples of similar layouts.

Frequent substructure mining. Frequent subgraph mining ex-
tracts from a set of input graphs G = {Gi}ni=1, a set of subgraphs
F = {Fk}dk=1, which frequently occur (more than a given thresh-
old value smin) in the input graphs based on subgraph isomorphism.
We define:

F = {Fk | |Sk| =
n∑
i=1

xik > smin} (6)

where xik = I(Fk ⊆ Gi) is an indicator function for subgraph
isomorphism and Sk = {Gi | xik = 1} is the supporter set of Fk.

Directly applying frequent subgraph mining to structural graphs is
ineffective since the the proximity relationships are not necessar-
ily consistent across different scenes, e.g., see Figure 7(a,b). One
may then resort to inexact graph matching, e.g., based on graph
edit distance [Riesen et al. 2010]. However, the large search space
of inexact subgraph mining makes such approaches prohibitive.

We propose a two-step scheme for frequent substructure mining
(Algorithm 2) which carries out inexact graph matching efficiently.

Figure 7: Scenes (a) and (b) have the same sub-scenes represented
with different subgraphs. (c) and (d) have the same subgraphs while
the layouts of the corresponding sub-scenes are different.

We first perform frequent subgraph mining based on exact subgraph
isomorphism, using gSpan [Yan and Han 2002], with a relatively
low minimal support threshold (Line 1 in Algorithm 2). Then, in the
second step, we employ inexact subgraph matching [Riesen et al.
2010] to match the frequent subgraphs mined in the previous step
against all graphs in the set, to expand their support (Lines 2-6).
Note that in both steps, the matching of graph nodes is exact and
based only on node labels.

To create tolerance for different proximity connection graph struc-
ture, we use error correction of the subgraphs by introducing three
edit operations on graph edges: insertion and deletion of proximity-
type edges, as well as substitution between two proximity edges.
The edit cost of each operation is defined as the spatial arrange-
ment dissimilarity (Equation 5) between the two pairs of objects
involved. If the total edit cost δ(Gi, Fk) for matching Fk and Gi is
less than δt = 0.1, we add Gi to Fk’s supporter set.

For a frequent subgraph Fk, we have obtained its embedding in
any of its supporter graphs during the mining step, denoted as
Gi(Fk) ⊆ Gi, Gi ∈ Sk. However, the embedding of Fk in its
supporters may have different layouts since the exact mining step is
layout-oblivious, e.g., as shown in Figure 7(c,d). We locate and re-
move weak (or outlier) supporters in which the embedded subgraph
has significantly different layout from those in the other supporters
(Lines 7-10). Specifically, given a supporter Gi ∈ Sk of Fk, we
compute the average dissimilarity between its corresponding em-
bedding and those in all other supporters,

ϕ(Gi, Fk) =
∑

Gj∈Sk,i 6=j

Dlayout(Gi(Fk), Gj(Fk)),

and filter out this supporter if the value exceeds a threshold ϕt =
0.3|Sk|. Finally, we remove those subgraphs whose number of sup-
porters falls below the minimal support threshold smin (Line 12).

Cluster-guided weighted mining. Our goal is to detect repre-
sentative focal points characterizing a meaningful clustering of the
input scenes, and not substructures which are frequent over the en-
tire collection. Therefore, instead of relying on the frequency crite-
rion in Equation (6), we base our substructure mining on the current
clusters and perform weighted subgraph mining [Tsuda and Kudo
2006]. For each cluster C`, we define supporting weights ($`i)

n
i=1

as a measure of support of Gi to any substructure. A substructure
is detected as frequent if its weighted sum of support, denoted by
discriminant score η`k, is greater than a threshold ηt

`:

F` = {Fk | η`k > ηt
`} where η`k =

∣∣∣∣∣
n∑
i=1

$`i(2xik − 1)

∣∣∣∣∣ . (7)



Algorithm 2: Extended Frequent Substructure Mining
Input : structural graphs G = {Gi}i, minimal support smin

Output: frequent substructures F = {〈Fk,Sk〉}k
1 F = {〈Fk,Sk〉}k ← MineSubgraph(G, smin);
2 foreach Gi ∈ G do // expand support
3 foreach 〈Fk,Sk〉 ∈ F do
4 δ(Gi, Fk)← ErrorCorrectMatch(Fk, Gi);
5 if δ(Gi, Fk) < δt then
6 Sk ← Sk ∪ {Gi};

7 foreach 〈Fk,Sk〉 ∈ F do // filter support
8 foreach Gi ∈ Sk do
9 if ϕ(Gi, Fk) > ϕt then

10 Sk ← Sk − {Gi};

11 if |Sk| < smin then
12 F ← F − {〈Fk,Sk〉};

13 return F ;

By using positive weights $`i, if Gi belongs to C`, and negative
otherwise, the discriminant score favors a substructure which is
frequent in cluster C` and penalizes its frequency in other clus-
ters. Therefore, the mined substructures in F` are frequent mainly
within cluster C`. Specifically, we set $`i = x`i/n` − 1/n, where
x`i = I(Gi ∈ C`), and ηt

` = µn/n`. We fix µ = 0.1 in our algo-
rithm. The final set of focal points takes the union of per-cluster dis-
criminant substructures: F =

⋃c
`=1 F`, where c is the number of

clusters. To achieve weighted mining, we evaluate the discriminant
score of the individual substructures, which are efficiently enumer-
ated by gSpan, and identify the discriminative ones based on the
current clusters. Then we perform support expanding and filtering
for the extracted substructures. In the first iteration, when clustering
is missing, we use unweighted frequent substructure mining.

4.2 Focal-induced scene clustering

With the focals extracted, we perform subspace clustering to group
the input scenes according to the extracted focals that they “share”,
i.e., the scenes contain and support the same focal. For each scene,
we build a high-dimensional feature vector for clustering. The fea-
ture is defined by the set of all extracted focals in the most current
focal mining step (Section 4.1). Each entry of the feature vector
is an indicator of support of the scene to the corresponding focal,
forming a Bag-of-Words (BoW) feature: xi = (xik)dk=1. Subspace
clustering is then performed over all input data represented in the
feature space, X = [xi]

n
i=1 ∈ Rd×n, to extract clusters character-

ized by a low-dimensional subspace.

For subspace clustering, we adopt the method of Wang et
al. [2011a] on subspace segmentation via quadratic programming
(SSQP), a state-of-the-art spectral clustering based approach. The
basic idea of SSQP is to express each datum xi as a linear com-
bination of all other data in the dataset, xi =

∑
j 6=i zijxj , while

implicitly enforcing the coefficients zij to be zero for all xj which
belongs to different subspace from xi. To learn such a coefficient
matrix Z ∈ Rn×n, it solves the following constrained optimization
problem:

min
Z
f(Z) = ‖XZ−X‖2F + β‖ZTZ‖1

s.t. Z > 0; diag(Z) = 0,
(8)

where ‖ · ‖F is the Frobenius norm and diag(Z) the diagonal vec-
tor of matrix Z. The `1-regularization term enforces sparsity of the

Algorithm 3: Iteratively Reweighted Subspace Clustering
Input : structural graphs G = {Gi}ni=1,

BoW features: X = [xi]
n
i=1, (xi = (xik)dk=1)

weights: W = [wi]
n
i=1, (wi = (wik)dk=1)

Output: subspace clusters {C`}c`=1

1 for i = 1 to n do
2 wi ← 1;

3 repeat
4 {C`}c`=1 ← SubspaceClustering(G, X, W);
5 for ` = 1 to c do // update weights
6 R` ← RepresentativeFocalSet(C`);
7 κ` ← Compactness(C`,R`);
8 foreach Gi ∈ C` do
9 foreach Fk ∈ R` do

10 wik ← n` · κ` · η`k;

11 for k = 1 to d do
12 if Fk /∈

⋃c
`=1R` then

13 for i = 1 to n do
14 wik ← 0;

15 until the overall compactness
∑c
`=1 n`κ` does not improve;

16 return {C`}c`=1;

solution, leading to feature selection for subspace clustering. The
problem is a linear constrained quadratic programming which can
be solved efficiently. The resulting coefficient matrix then forms
an affinity matrix, |Z + ZT |/2, based on which spectral clustering
is applied to obtain the clustering result. To automatically deter-
mine the number of clusters, we employ self-tuning spectral cluster-
ing [Zelnik-Manor and Perona 2004]. In practice, the cluster count
is relatively stable throughout the iterations since the structure of
the BOW feature matrix does not change significantly.

Besides the clustering result, we need to identify the representa-
tive focals which characterize the clusters. For each cluster C`, we
identify a set of representative focals, denoted as R`. We rank the
importance of all focals supported by any structural graph in the
cluster based on their discriminant score η`k; see Equation (7). The
top ranked focal is selected as the representative one. We select
the top focals from the list until the i-th one, when there are over
pc = 80% of the structural graphs in the cluster which support
these top i focals simultaneously.

Our ultimate goal is to maximize the compactness of all clusters
based on a scene-to-scene similarity emphasizing their representa-
tive focal points. The subspace clustering above is based on indica-
tor features, which capture the occurrence of the focals but are not
sufficiently informative to reflect the actual scene similarity. Di-
rectly incorporating focal-centric scene similarity into the subspace
clustering is infeasible since the representative focals are unknown
before the feature selective clustering is performed. Therefore, we
propose an iteratively reweighted subspace clustering process to
gradually produce more compact clusters where the compactness is
measured based on the focal-centric graph kernel (FCGK).

Focal-centric graph kernel. Given a cluster C`, its compactness
is defined as the average distance between all pairs of structural
graphs belonging to it, measured by the FCGK:

κ` =
1

n2
`

∑
Gi,Gj∈C`

kpG(Gi, Gj), (9)
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Figure 8: An mini-experiment on reweighted subspace clustering.
The weighted BoW features are shaded in grey level (dark=large;
light=small). From the initial BoW features (a), subspace cluster-
ing produces three clusters (colored) along with their representa-
tive focals (marked in corresponding color). The colored numbers
indicate the compactness values of clusters. F3 is not discriminant
as it appears across three clusters (b) so in (c) the corresponding
weights are set to 0. The weights for F4 are decreased due to the
low compactness of the blue cluster. The next clustering groups G2

into the green cluster with F5 as the representative focal point (d).

where kpG(·, ·) is the weighted p-th order walk graph kernel:

kpG(Gi, Gj) =
∑

r∈Gi,s∈Gj

λr,sk
p
R(Gi, Gj , r, s). (10)

kpR(Gi, Gj , r, s) is the p-th order rooted-walk graph kernel [Fisher
et al. 2011] which we briefly review below for completeness. It
compares nodes r and s, in graphs Gi and Gj , respectively, by
comparing all walks of length p whose first node is r against all
walks of length p whose first node is s:

kpR(Gi, Gj , r, s) =∑
(r1,e1,...,ep−1,rp)∈W

p
Gi

(r)

(s1,f1,...,fp−1,sp)∈W
p
Gj

(s)

kn(rp, sp)

p−1∏
i=1

kn(ri, si)ke(ei, fi),

whereW p
G(r) is the set of all walks of length p originated from r in

graph G. The node kernel kn takes both geometry and label com-
parison into account, similar to [Fisher et al. 2011], except that we
used a single label for each object, instead of a series of semantic
tags. For edge kernel ke, we use the similarity of spatial arrange-
ment (Equation 2), instead of a binary comparison of edge types.

For the walk kernel κ` to be focal-centric, we set higher weight for
those rooted walks which originates from a node in a representative
focal of cluster C`:

λr,s =

{
1 + λ · η`k if r ∈ Gi(Fk), s ∈ Gj(Fk) and Fk ∈ R`
1 otherwise

where λ is a scaling factor. In our algorithm, we set λ = 100
which is fairly high and emphasizes more the role of focals in scene
characterization than the overall scene similarity.

Iteratively reweighted subspace clustering. For a structural
graph Gi, we weight the individual dimensions of its BoW feature
vector by a weight vector wi = (wik)dk=1 and solve a weighed sub-
space clustering which minimizes the error of linear approximation
in Equation (8) under a weighted Frobenius norm. Specifically, we
replace the first term in Equation (8) by:

‖XZ−X‖2W,F =

n∑
i=1

d∑
k=1

w2
ik[(XZ)ik −Xik]2. (11)

The weights allow us to tune the importance of the individual di-
mensions when seeking subspaces and can be utilized to iteratively
shift clustering results. For example, one can increase the weights
corresponding to the dimensions spanning the subspace of a cluster
obtained in the last round, to reinforce the cluster in the current clus-
tering. In our case, we encourage the reoccurrence of the compact
clusters in the next iteration by increasing the weights of the dimen-
sions corresponding to its representative focal points, and deprecate
incompact clusters by decreasing their corresponding weights.

Initially, the weights in wi are set uniformly to 1. In each iteration,
we perform the weighted subspace clustering and then update wi

based on the compactness of the cluster to which Gi belongs; see
Algorithm 3. For each member of a cluster, we compute the weights
of the dimensions corresponding to the representative focals of the
cluster based on cluster compactness and focal point discriminant
score (Line 10). If a focal is not a representative one for any cluster,
we set a 0 for the corresponding dimension of the weight vector for
all structural graphs (Line 11-14). The stopping criteria for this
iterative process is the same as the one used during the interleaving
optimization, i.e., the change of overall cluster compactness.

Figure 8 demonstrates the process of reweighted subspace cluster-
ing with a mini-experiment on 8 structural graphs with 5 focals. In
the experiment, after obtaining the subspace clustering along with
the representative focals, the weights corresponding to focal point
F3 and F4 are decreased, due to low discriminant score and low
cluster compactness, respectively. With the updated weights, G2,
which was originally clustered into the blue cluster due to F4, is
now grouped into the green one characterized by F5. This is be-
cause F5 plays the major role in clustering G2 after F4 is depre-
cated. After reweighting, the weighted feature vector of some struc-
tural graphs may decrease to (or close to) 0 vector (e.g.,G4 andG7

in Figure 8). Since the clustering of these structural graphs is quite
unpredictable, we choose to leave them out when their weight vec-
tor vanishes, to make the iterative clustering converge faster. These
structural graphs are later introduced back in the beginning of the
next round of interleaving optimization.

4.3 Cluster attachment and focal joining

Cluster attachment. Spectral clustering produces a partition of
an input dataset, which does not reflect potential cluster overlapping
due to scenes which exist in multiple clusters. In general, a struc-
tural graph for an input scene which support multiple focals may
belong to multiple clusters that have other different representative
focals. We simply attach such clusters with respect to the shared
scenes, which can be easily identified, to reveal the overlap.

Focal joining. As subgraph mining is performed on structural
graphs whose node connections only capture local proximity, it is
unable to return large-scale and non-local substructures. This issue
has been observed in the recent work of Xu et al. [2013] which
is based on structure group detection over the structural graphs.
In our work, frequent substructure detection is coupled with sub-
space clustering. This enables us to combine the extracted focals
to form a larger and non-local substructure, through analyzing the
clusters they characterize. Suppose that F1 and F2 are both repre-
sentative focals for some cluster C`. If their supporter sets in C`,
denoted as S`1 and S`2, overlap sufficiently, i.e., |S`1 ∩ S`2| >
0.9 min{|S`1|, |S`2|}, we join them, by a union of their nodes, to
form a larger substructure F12 as a representative focal for C`.

5 Results

We present results obtained by our algorithm for focal point driven
analysis of indoor scene collections. For scene retrieval, we com-



Collection #f #nlf fmin favg fmax %mf
Stanford 24 4 2 3 6 50.4%
Tsinghua 34 7 2 3 5 46.1%

Table 1: Statistics for focal point extraction. #f denotes the total
number of focals and #nlf that of non-local ones. The minimum,
average, and maximum number of objects in an extracted focal is
denoted by fmin, favg , and fmax. %mf is the percentage of multi-
focal scenes over the whole collection.

pare our results to those obtained from state-of-the-art methods both
through precision-recall curves and a preliminary user study, tar-
geted for hybrid scenes. More extensive results and an accompany-
ing video can be found in the supplementary material.

Datasets. The datasets we experiment on were provided by the
Stanford repository [Fisher et al. 2012] and the Tsinghua reposi-
tory [Xu et al. 2013]. Both datasets contain semantic tags with the
objects originally collected from Google (now Trimble) 3D Ware-
house. Since the tags from the two datasets are inconsistent, we run
our test on each dataset separately. For each scene, we remove the
walls and focus only on the interior scene objects. The Stanford col-
lection consists of 132 scenes and 3, 461 objects, encompassing 78
object categories and five labeled scene categories. The Tsinghua
dataset consists of 792 scenes and 13, 365 objects, encompassing
119 object categories and six labeled scene categories. The Ts-
inghua dataset contains 102 hybrid scenes which is composed of
many subscenes, each representing a room.

Parameters and statistics. The key parameters of our algorithm
include: the minimum support smin used for frequent substruc-
ture mining in the first iteration, and the rooted paths combina-
tion weights used in computing graph kernel. All the results re-
ported in the paper were obtained with the same parameter setting:
smin = 40 for Tsinghua dataset and smin = 20 for the Stanford
dataset. The parameters for graph kernel use the optimal ones avail-
able from the published work of Fisher et al. [2011]. Values for all
other parameters are fixed throughout and described in Section 4.

Statistics and timing. Table 1 shows some statistics from focal
point extraction and scene clustering. Timing wise, it took 10.5
minutes to process the whole Tsinghua dataset (792 scenes) and
3.2 minutes for the Stanford scene collection (132 scenes). Over an
iteration, compactness evaluation (including FCGK computation)
takes ~60% of the time, with spectral clustering ~30%, and inexact
frequent pattern mining ~5%. Note that the first two parts were
both implemented in Matlab and could see significant speed-up if
coded in C/C++. Timing is measured on a 4 quad-core 2.80GHz
Intel Core CPU with 12GB RAM.

Focal point extraction. Figure 9 shows several clusters and their
representative focal points extracted from the Tsinghua collection;
the complete set of results for focal extraction can be found in the
supplementary material. We can observe hybrid scenes containing
multiple focal points, which is fairly typical and results in cluster
overlap. Also worth noting is the extraction of non-local focals,
which are composed of relatively distant object groups, e.g., {TV,
TV-stand, table, sofa}, etc. Table 1 gives the number of non-local
focals extracted for both datasets. See also the last two rows in
Figure 9 for the effect of focal joining.

Iterative clustering. Figure 10 plots how the normalized com-
pactness of the clusters change as the iterative clustering algorithm
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Figure 10: The plots show the change of the compactness of the
clusters obtained as our interleaving optimization progresses, for
Stanford and Tsinghua datasets respectively. The red dots repre-
sent the switching points from outer loop (mining) to inner loop
(clustering). The optimization takes 5 and 6 interleaving iterations
to converge on the two datasets, respectively.

progresses. While the change is not strictly monotone, it is evident
that the iteration generally improves cluster quality over time. The
final cluster counts for the two sets are 5 and 9, respectively.

Precision-recall on scene retrieval. Figure 11 compares our
method to two other methods for scene retrieval:

1. GK: Graph kernels of Fisher et al. [2011] to measure simi-
larity between whole scenes. Since we were unable to ob-
tain the authors’ code, we coded up our own implementation
with two major differences to the original work. First, we use
our structural graphs which only encode two types of relation-
ships (support and proximity) and do not consider hierarchical
scene graphs. Second, the computation of node and edge ker-
nels are slightly different; see Section 4.2. For both GK and
FCGK, the schemes for node and edge kernel estimation and
graph kernel normalization, as well as all the parameters, are
the same as the original work.

2. BOW: A baseline method where we use bag-of-words fea-
tures on the focal points only as a scene-to-scene similarity.

3. FCGK (SG): On the Tsinghua dataset, we also apply our
FCGK similarity on the scenes where as focals, we use the
212 structural groups detected by Xu et al. [2013].

When applying our method, which uses FCGK for scene similarity,
we show results in three settings: 1) using the initial set of focals
after only one step of frequent pattern mining; 2) using an interme-
diate set of focals; 3) using the final set of focals extracted.

For the Tsinghua dataset, the ground truth for evaluating scene re-
trieval is given by the scene labels/categories which come with the
dataset. Since this dataset contains many hybrid scenes, we sep-
arate it into a subset of simple scenes and the remaining hybrid
(complex) scenes and report results on each and their combination.
Since the Stanford collection does not come with scene labels, we
provide our own labels obtained manually, which, admittedly, could
introduce an evaluation bias. A potentially more reliable method,
such as voting from multiple users, could be employed.

From the precision-recall curves, we see that our focal-centric
similarity based on the final set of focals is the best in all four
cases. Moreover, the performance gain is more prominent for hy-
brid scenes. These results demonstrate not only the merit of uti-
lizing focals for scene comparison but also the merit of our focal
extraction scheme, as it seems evident that retrieval performance
improves as our iterative algorithm progresses.



Figure 9: Several clusters and their representative focals (highlighted in colors) extracted from the Tsinghua scene collection. Top row shows
an intermediate result for two clusters and the middle row shows the final result for the relevant clusters. Bottom rows show the final result
for other clusters. Note multi-focal hybrid scenes, cluster overlap (marked with the red dashed box), and non-local focal points, such as the
combos of {TV, TV-stand, table, sofa} and {bed, nightstands, dresser, mirror} in the last two rows.
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Figure 11: Precision-recall curves for scene retrieval. (a) Stan-
ford scene collection. (b) Tsinghua collection, simple scenes. (c)
Tsinghua, hybrid scenes. (d) Tsinghua, all scenes.

Comparison to GK. Figure 12 shows an explicit comparison be-
tween GK and FCGK on scene similarity, attesting to the effective-
ness of utilizing focals. In our experiment, we also observed that the
matching performance of GK tends to be negatively affected by the
presence of many small/trivial objects. For example, when a scene
contains a shelf supporting many small objects, GK counts rooted
walks from all these objects, which would influence the similarity
between more prominent objects. FCGK is more discriminative and
trivial objects are less likely to have been chosen as focals.

User evaluation on retrieval. For a hybrid scene, it may be dif-
ficult to assign an unambiguous category label. The ground truth
used for retrieval on such scenes may be unreliable. Thus instead
of relying on scene categories as ground truth, we let human users
judge scene similarity based on their prior knowledge. In this sec-
ond comparative study on scene retrieval, we focus exclusively on
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Figure 12: Comparing GK and FCGK on scene similarity. Top
row: two scenes in the same category, but GK returns a large dis-
tance between them due to the dissimilar surrounding objects. Bot-
tom row: two scenes belonging to different categories while GK re-
turns a small distance also attributing to surrounding objects, e.g.,
the nearby bookshelves. In contrast, with a focal-centric view, our
method gives more meaningful distances on the two pairs.

retrieval where the query is a hybrid scene. We present a user with
10 queries. For each query, the top return from the three compared
methods (GK, BOW and FCGK) are presented to the user and the
user is asked to choose which of the three is most similar to the
query. We repeat this for a total of 102 queries for the hybrid scenes
in the Tsinghua dataset. Against GK, we obtain a winning percent-
age of 70.2% and against BOW, we obtain 73.9%. The results
are statistically significant (with p = 0.01). In the studies, each
scene has been rendered in three random bird’s eye views and the
images were presented randomly. Among the 43 participants, 80%
are computer science researchers, with ages 20 to 50. The rest are
frequent computer users with varying backgrounds.

6 Applications

Our scene organization allows classical scene queries and is thus
suitable for any application which utilized retrieval results as be-
fore, e.g., [Fisher et al. 2012; Xu et al. 2013]. In this section, we



Figure 13: Comprehensive retrieval takes a query scene and re-
turns scenes grouped by well-matched focals with the query. In
each group, the returns are ranked by FCGK based on the corre-
sponding focal. In this example, the query has two focals (colored
yellow and red) matched from the scene organization. Three ranked
lists of returns corresponding to the two focals (first two rows) and
to the joined focal (bottom row) are shown.

discuss several new capabilities afforded by our focal-based data
organization for scene retrieval and exploration.

Comprehensive retrieval. In classical retrieval, a single query
would fetch a single ranked list of data items. With our focal-centric
similarity and pre-computed set of focals, our scene organization
supports such classical queries. It also supports part-in-whole type
of queries, where the user specifies a region of interest (ROI) in the
query scene. This is demonstrated with the exploration tool which
we describe below. The interesting new feature enabled by our
scene organization is what we call comprehensive retrieval. Here
the query does not have a specified focal. However, the available
focals in the organization are matched with the query scene. In-
stead of returning a single ranked list of scenes, the comprehensive
retrieval returns multiple ranked lists, each of which corresponds to
a well-matched focal. Figure 13 shows such a result. Note that the
vertical order in the table has no clear meaning since the three (hori-
zontal) lists are retrieved based on different sets of focals. If putting
all the results together, however, one can expect that those retrieved
with multiple focals should be ranked higher since they have more
focal substructures receiving higher weights; refer to Equation (9).

For focal-to-scene matching, we utilize the efficient subgraph
matching approach described in [Riesen et al. 2010], by which the
focal subgraphs are pre-compiled into a hierarchical representation
to accelerate the online matching. The average query time is 960ms
for the Tsinghua collection and 140ms for the Stanford set.

Multi-query retrieval. In applications such as example-based
scene synthesis [Fisher et al. 2012], one may form queries con-
sisting of multiple semantically related scenes and wish to retrieve
more scenes “of the same”. Such multi-query retrievals are well-
supported by our scene organization. Indeed, since the query scenes
are related, they likely share meaningful substructures, making
them suitable for focal-based scene comparisons.

Given a query set, we extract frequent substructures from the set
and match them against the extracted focals in the scene organiza-
tion. We then retrieve scenes from the organization using FCGK
based on the matched focals. Figure 14 shows one such result with
a query set of four hybrid scenes. For comparison, we also show
a ranked list of returns based on GK similarity measured against

Figure 14: Multi-query retrieval takes a query set (left) and returns
a ranked list of scenes (bottom-right) via focal-based scene com-
parison. FCGK similarity is used and measured based on focals
(colored red and yellow) that well-match frequent substructures in
the query set. Returns based on global scene similarity computed
by GK are also shown (top-right). To not introduce a bias by color-
ing of the focals, in the GK returns, we also color any object whose
tag matches that of an object in one of the focals.

any scene in the query set. As one would expect, the focal-based
retrieval produces more discernable results, and more useful re-
sults. If the user selected four query scenes all containing a bed-
nightstand combo and a desk-chair combo, then it is likely that
he/she was seeking scenes that contain similar substructures.

Scene exploration. We develop an exploration tool, based on the
extracted focals, which enables a user to browse through a hetero-
geneous scene collection. Focal points are the primary means for
search and navigation. Figure 15 shows the GUI of our tool. The
user can select a few focals from the focal point list panel (bottom),
and our tool automatically selects a set of scenes sharing similar
focals and lists them in the scene list panel (right). The user can
browse the list and view the scenes in the main viewer (middle). At
any time, the user can click on a selected focal to view its embed-
ding in the current scene. In terms of navigation, as shown in Fig-
ure 3, the user can traverse from one scene to another, and one scene
cluster to another, through focals which interlink them. The accom-
panying video contains full sessions of interactive exploration.

In addition, we provide an interface for the user to paint a region of
interest (ROI) and search for scenes which contain sub-scenes that
are similar to the surroundings of the ROI. When the user selects
an ROI in a scene, our system first finds a focal point in the scene
which overlaps most with the ROI and adds the focal to the selected
list. It then retrieves a new list of scenes based on the updated list
of selected focals. Exploring the database with focal points around
an ROI, instead of with only the ROI, can provide more relevant
results. For example, if the user selects only a chair model as ROI,
naive partial matching would simply return all scenes containing a
chair. In contrast, our tool searches for scenes sharing the same fo-
cal around the chair, returning results that are more context-aware.

Note that the rooted walk graph kernels of Fisher et al. [2011] could
also support contextual part-in-whole queries. However, perform-
ing subgraph search is likely too time consuming for online re-
trieval. With pre-analysis resulting a focal-based scene organiza-



Figure 15: GUI for our exploration tool is composed of four parts:
the focal point list panel (red box), the selected focal list panel
(green), the scene list panel (blue), and the main scene viewer. The
user can pick a selected focal to view its embedding in the current
scene. She can also select a region of interest (ROI) in the viewer
to explore more scenes via the focals around the ROI.

tion, our tool can support efficient context-aware partial matching
over a large heterogeneous scene collection.

7 Discussion and future work

At the core of the data organization problem is the mechanism for
comparing data. Traditional approaches rely on holistic data views
and unique distances defined between data items for grouping or
clustering. However, when the data become complex and multi-
faceted, a fixed and global view on data similarity can hardly ex-
press the rich characteristics in the data.

We advocate the use of focal points for comparing and organizing
complex and heterogeneous data and use 3D indoor scenes as a pro-
totype to demonstrate its feasibility and performance gains, e.g., in
retrieval. The new approach seems particularly apt at dealing with
complex and hybrid scenes. Perhaps its most compelling feature is
the ability to process large and heterogeneous collections of scenes
and to organize them into an interlinked and well-connected cluster
formation, which facilitates scene exploration.

FCGK vs. GK. While our retrieval experiment showed superior
performance of FCGK over GK, one should realize that a direct
comparison between the two is not exactly fair. GK is a standalone
graph similarity measure, where only two graphs to compare are
needed. FCGK-based comparison comes with a higher cost as it
requires a set of graphs and a co-analysis for focal extraction. That
said, if a scene collection is available, we would still suggest using
FCGK for its better performance and modest processing costs.

Comparison to structural groups. In our work, a focal point
consists of a group of scene objects and it is derived via structural
scene analysis. By name alone, this suggests similarity to the struc-
tural groups computed by Xu et al. [2013]. There are however ma-
jor differences. First, their structural groups are category groups,
while our focals are object groups. More importantly, their group
extraction involves only frequent pattern mining through local prox-
imity based search. The latter implies that their method is unlikely
to return non-local structural groups. This is in part evidenced
by the much higher number of groups (212) they obtain vs. the

34 focals we obtain, on the same scene collection (Tsinghua, 792
scenes). The retrieval results in Figure 11 seem to suggest that non-
local focals extracted via mining and clustering provide the better
perspectives for meaningful scene comparison.

Non-unique distance. The retrieval experiment using FCGK
seems to suggest that our method assigns a unique distance be-
tween any two scenes. This is true once the set of focals is fixed
and FCGK is to be computed based on those focals and the cluster-
ing result. However, the non-uniqueness of focal-centric distances
is well utilized in other settings including comprehensive retrieval,
multi-query retrieval, and ROI-driven scene exploration, where the
relevant focals in the query scenes are all determined on-demand.

Limitations. Our current algorithm depends on semantic labeling
of scene objects. It remains to be seen whether it works effectively
with noisy or incomplete labels, based on pure geometry analysis.
For example, it is interesting to test our method on inputs with var-
ious levels of label noise. However, it would be hard to quantita-
tively evaluate the robustness against noisy labels since it may be
difficult to reproduce realistic labeling noise introduced by humans.
Nevertheless, the two datasets we used do contain some incorrect
labels, which did not seem to affect the overall performance. There
are perhaps more than a desirable number of parameters in the al-
gorithm, whose values were determined experimentally. From a
technical stand point, improvements are possible in various compo-
nents of the algorithm. For example, our layout similarity operates
on OBBs only, which may be unsuitable for objects with complex
geometry and spatial arrangements. The structural graphs model
the scenes only as flat arrangements of objects. Hierarchical orga-
nization may be potentially advantageous.

Future work. One obvious pursuit is to apply our focal-driven ap-
proach to other datasets, e.g., large and heterogeneous collections of
annotated images. An interesting technical question is whether our
scene organization can be updated with an additional set of scenes
without recomputing everything. Also, rather than replacing one
object at a time for scene synthesis like in previous works, our scene
organization and focal-based partial scene retrieval, may allow for
substituting sub-scenes for the synthesis task.

We conclude the paper with a question: “what is the best way to
compare complex scenes?” This work, along with others before it,
assume that comparing attributed graphs defined by semantic tags
and object arrangements is the best way. However, we observe that
visually, many retrieval results do not look so compelling even with
the best method to date. If one takes away the colorings in Fig-
ure 14, then the contrast between GK and FCGK would not be as
salient. Hence, the focal-centric view we advocate offers a per-
spective worth considering. The general question, also one that is
attributed to complex data beyond those of indoor scenes, should
perhaps be answered with user and application intent in mind.
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